Lithium Compounds in Organic Synthesis

Lithium Compounds in Organic Synthesis

  • Producent: VCH
  • Rok produkcji: 2014
  • ISBN: 9783527333431
  • Ilość stron: 576
  • Oprawa: Twarda
Wysyłka:
Niedostępna
Cena katalogowa 689,00 PLN brutto
Cena dostępna po zalogowaniu
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×
Cena 689,00 PLN
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×

Opis: Lithium Compounds in Organic Synthesis

This unique book covers fundamentals of organolithium compounds and gives a comprehensive overview of the latest synthetic advances and developments in the field. Part I covers computational and spectroscopic aspects as well as structure-reactivity relationships of organolithiums, whereas Part II deals with new lithium-based synthetic methodologies as well as novel synthetic applications of functionalized lithium compounds. A useful resource for newcomers and active researchers involved in organic synthesis, whether working in academia or industry!List of Contributors XV Foreword XXI Preface XXIII Part I New Structural Aspects of Lithium Compounds 1 1 Structure--Reactivity Relationship in Organolithium Compounds 3 Elena Carl and Dietmar Stalke 1.1 Structural Principles in Organolithium Compounds 3 1.2 Donor-Base-Free Structures 4 1.2.1 Tetramers 4 1.2.2 Hexamers 6 1.2.3 Comparison of [Me3SiCH2Li]6 and [n-BuLi]6 7 1.3 Disaggregation with Lewis Bases 8 1.3.1 Tetramers of Alkyllithium Compounds 9 1.3.2 Asymmetric Aggregates of [Me3SiCH2Li] (4) 11 1.3.3 An Octameric Aggregate of [Me3SiCH2Li]6 12 1.4 Donor-Base-Induced Dimers and Monomers 17 1.4.1 Alkyllithium and Trimethylsilylmethyllithium Compounds 17 1.4.2 PMDETA Aggregated Monomers 24 1.5 Heterobimetallic Organolithium Compounds 25 1.6 Conclusion and Outlook 28 References 29 Further Reading 31 2 Computational Perspectives on Organolithiums 33 Sten O. Nilsson Lill 2.1 Introduction 33 2.2 The Nature of Bonds to Lithium 34 2.3 Aggregation of Lithium Organic Compounds 35 2.4 Solvation Effects 36 2.5 Lithium Alkoxides and Lithium Amides 41 2.6 Computational Studies on Various Organolithium Applications 43 2.7 Conclusion and Outlook 46 References 47 Further Reading 51 3 Spectroscopic Advances in Organolithium Reactivity: The Contribution of Rapid-Injection NMR (RINMR) 53 Amanda C. Jones 3.1 Introduction 53 3.2 The Curtin--Hammett Principle 54 3.3 Organolithium NMR 55 3.4 Features of RINMR 58 3.4.1 Brief History 58 3.4.2 Apparatus Descriptions and Rapidity of Acquisition 59 3.4.3 Temperature Range and Control 60 3.4.4 Volume Accuracy of Injection 61 3.5 Use of RINMR to Study Organometallic Reactions 61 3.5.1 n-Butyllithium Aggregate Reactivity (1985) 61 3.5.2 Magnesium Chelates in Carbonyl Additions (1987/1990) 64 3.5.3 Lithium Enolate Aldol (1992) 65 3.5.4 Alkyllithium Polymerization (1995/1999) 66 3.5.5 Tin Transmetallation (2007) 67 3.5.6 Cuprates (2002--Present) 68 3.5.7 n-BuLi Aggregate Reactivity Revisited (2007) 72 3.5.8 Tris(trimethylsilyl)methyllithium (2008/2009) 74 3.5.9 Enolization and Lithium Aldol (2011) 78 3.6 Conclusion and Outlook 80 References 80 Further Reading 84 4 Spectroscopic Advances in Structural Lithium Chemistry: Diffusion-Ordered Spectroscopy and Solid-State NMR 85 Muriel Sebban, Laure Guilhaudis, and Hassan Oulyadi 4.1 General Introduction 85 4.2 Application of Solution NMR to the Structural Characterization of Organolithium Compounds 86 4.2.1 Diffusion NMR Measurement Methods 88 4.2.1.1 Pulsed Field Gradient Spin Echo (PFGSE) 88 4.2.1.2 From the First to the Second Dimension: DOSY NMR Experiment 89 4.2.2 DOSY Application to the Structural Analysis of Organolithium Compounds 90 4.2.2.1 Structure of the Mixed Methyllithium/Lithium Chloride Aggregate 97 4.2.2.2 Structure of a Lithium Phosphido-Borane 99 4.2.2.3 Structure of Lithium Zincate 101 4.2.3 Conclusion 104 4.3 Solid-State NMR 104 4.3.1 Basic Principles 105 4.3.1.1 Homo and Heteronuclear Dipole--Dipole Couplings (D: Dipole--Dipole) 105 4.3.1.2 Chemical Shift Anisotropy (CSA) 105 4.3.1.3 Quadrupolar Interactions for Nuclei with I < 1/2(Q) 105 4.3.1.4 Magic Angle Spinning (MAS) 106 4.3.1.5 High-Power Heteronuclear Decoupling 107 4.3.1.6 Cross Polarization -- Hartmann--Hahn Condition 107 4.3.2 Solid-State NMR -- Applications to Organolithium Compounds 108 4.3.2.1 Structure of Lithium Alkyl and Aryl Complexes Stabilized by Nitrogen Ligands 108 4.3.2.2 Symmetry and Geometry of Formed Structures: CIP, SSIP, Sandwich 109 4.3.2.3 Molecular Dynamics 113 4.3.2.4 Reaction Monitoring 113 4.3.3 Conclusion and Outlook 117 References 117 Further Reading 121 5 Mixed Lithium Complexes: Structure and Application in Synthesis 123 Robert E. Mulvey and Charles T. O'Hara 5.1 Introduction 123 5.2 Structural Chemistry of Heterometallic Lithium Complexes 123 5.2.1 Mixed Lithium--Sodium Complexes 124 5.2.2 Mixed Lithium--Potassium Complexes 127 5.2.3 Mixed Lithium--Magnesium Complexes 129 5.2.4 Mixed Lithium--Zinc Complexes 135 5.3 Structural Chemistry of Heteroanionic Lithium Complexes 139 5.4 Synthetic Applications of Lithium Magnesiates: Turbo-Grignard Reagents 142 5.5 Conclusion and Outlook 146 References 146 Further Reading 150 Part II New Synthetic Methodologies Based on Lithium Compounds 151 6 Oxygen-Bearing Lithium Compounds in Modern Synthesis 153 Filippo M. Perna, Antonio Salomone, and Vito Capriati 6.1 Introduction 153 6.2 alpha-Lithiated Oxygen-Substituted Compounds 153 6.2.1 Acyclic alpha-Alkoxy Organolithiums 155 6.2.1.1 Nonstabilized alpha-Alkoxy Organolithiums 155 6.2.1.2 Dipole-Stabilized alpha-Alkoxy Organolithiums 158 6.2.2 Cyclic alpha-Alkoxy Organolithiums 163 6.2.2.1 alpha-Lithiated Oxiranes 163 6.2.2.2 alpha-Lithiated Oxetanes 171 6.2.2.3 Miscellaneous 173 6.3 ortho-Lithiated Oxygen-Bearing Aromatic Compounds 177 6.4 Remote Lithiated Oxygen-Bearing Compounds 182 6.5 Conclusion and Outlook 185 References 186 Further Reading 190 7 Nitrogen-Bearing Lithium Compounds in Modern Synthesis 191 Leonardo Degennaro, Biagia Musio, and Renzo Luisi 7.1 Introduction 191 7.2 Lithiation of Cyclic Amines 193 7.2.1 Three-Membered Rings: Lithiated Aziridines 194 7.2.2 Four-Membered Rings: Lithiated Azetidines 200 7.2.3 Five-Membered Rings: Lithiated Pyrrolidines 201 7.2.4 Six-Membered Rings: Lithiated Piperidines 210 7.2.5 Seven-Membered Rings: Lithiated Azepines 212 7.2.6 Amino-Organolithiums from Heterocycles with More Than One Nitrogen Atom 212 7.3 Lithiation of Acyclic Amines 216 7.4 Conclusion and Outlook 220 References 221 Further Reading 223 8 Sulfur-Bearing Lithium Compounds in Modern Synthesis 225 Jos'e Luis Garc'ia Ruano, Alejandro Parra, and Jos'e Alem'an 8.1 Introduction 225 8.2 alpha-Lithiation 226 8.2.1 Thioethers 226 8.2.2 Sulfoxides 231 8.2.2.1 Alkyl Carbanions 231 8.2.2.2 Vinylic Carbanions 234 8.2.3 alpha-Sulfones 236 8.2.4 alpha-Sulfoximines 240 8.3 beta-Lithiation (ortho-Directed Lithiation) 243 8.3.1 Sulfides 243 8.3.2 Sulfoxides 244 8.3.3 Sulfones and Sulfonamides 248 8.3.4 Sulfoximines 248 8.4 gamma-Lithiation 249 8.4.1 Lateral Lithiation 250 8.4.1.1 Sulfoxides 250 8.4.1.2 Other Aryl Thioderivatives 260 8.4.2 Nitrogenated Fragments 261 8.5 Conclusion and Outlook 262 References 262 Further Reading 270 9 Phosphorus-Bearing Lithium Compounds in Modern Synthesis 271 Fernando L'opez Ortiz 9.1 Introduction 271 9.2 Carbanions Directly Linked to a Phosphorus Atom: PC1Li 272 9.2.1 PC1Li Species via Calpha-Lithiation of P(III) Compounds 272 9.2.2 PC1Li Species via Calpha-Lithiation of P(V) Compounds 275 9.2.3 PC1Li Species via Reactions of alpha, beta-Unsaturated P(V) Compounds 283 9.3 Carbanions Separated by One Atom from the Phosphorus: PC2Li 284 9.3.1 PC2Li Species via XCalpha-Lithiation (X = N, O) of P(V) Compounds 284 9.3.2 PC2Li Species via ortho-Lithiation of Organophosphorus Compounds 287 9.4 Carbanions Separated by Three Bonds from a Phosphorus Atom: PC3Li 292 9.5 Conclusion and Outlook 293 References 293 Further Reading 295 10 Advances in the Chemistry of Chiral Lithium Amides 297 Anne Harrison-Marchand and Jacques Maddaluno 10.1 Introduction 297 10.2 Chiral Lithium Amides as Bases 297 10.2.1 Enantioselective Conversion of Epoxides into Allylic Alcohols 298 10.2.2 Enantioselective Deprotonation of Cyclic Prochiral Ketones 303 10.2.3 Enantioselective Deprotonation of Bridgehead Carbons 307 10.2.4 Enantioselective Deprotonation of Benzylic Positions 310 10.2.5 Other Reactions 311 10.3 Chiral Lithium Amides as Nucleophiles 312 10.4 Chiral Lithium Amides as Ligands 315 10.5 Chiral Lithium Amides Structures 318 10.6 Conclusion and Outlook 324 References 325 11 Advances in Carbolithiation 329 Yury Minko and Ilan Marek 11.1 Introduction: The Definition of the Carbolithiation Reaction 329 11.2 Intermolecular Carbolithiation of Alkenes 330 11.3 Intramolecular Carbolithiation of Alkenes 338 11.4 Intermolecular Carbolithiation of Alkynes 342 11.5 Intramolecular Carbolithiation of Alkynes 345 11.6 Conclusion and Outlook 347 References 348 Further Reading 350 12 Reductive Lithiation and Multilithiated Compounds in Synthesis 351 Ugo Azzena and Luisa Pisano 12.1 Introduction 351 12.2 Alternative Solvents for Reductive Lithiation Reactions 352 12.3 Reductive Lithiation of Heterocyclic Compounds 354 12.4 Reductive Lithiation via C--C Bond Cleavage 357 12.5 Ammonia-Free Birch Reductions 365 12.6 Silyl-Lithium Derivatives 368 References 371 Further Reading 373 13 Dearomatization and Aryl Migration in Organolithium Chemistry 375 Jonathan Clayden 13.1 Introduction 375 13.2 Intermolecular Dearomatizing Addition Reactions 375 13.3 Intramolecular Dearomatizing Cyclization Reactions 377 13.3.1 Additions to Aryloxazolines 377 13.3.2 Additions to Arylsulfones 378 13.3.3 Additions to Aromatic Sulfonamides and Phosphonamides 379 13.3.4 Additions to Aromatic Amides 381 13.3.5 "Pericyclic" Dearomatizations 385 13.4 Aryl Migrations 386 13.4.1 Aryl Migration in N-aryl Ureas 386 13.4.2 Aryl Migration in N-aryl Carbamates 389 13.4.3 Aryl Migration in N-aryl Thiocarbamates 390 13.5 Alkenyl Migrations 393 13.6 Conclusion and Outlook 394 References 394 14 Lithium--Boron Chemistry: A Synergistic Strategy in Modern Synthesis 397 Charlotte G. Watson, Phillip J. Unsworth, Daniele Leonori, and Varinder K. Aggarwal 14.1 Reagent-Controlled Lithiation--Borylation 397 14.2 alpha-Halogen-Stabilized Lithium Carbenoids 399 14.3 Alkylidene-Type Carbenoids 400 14.4 alpha-Oxygen-Stabilized Organolithiums 401 14.4.1 alpha-Lithiated Primary Carbamates 402 14.4.2 alpha-Lithiated Benzoate Esters 409 14.4.3 alpha-Lithiated Benzylic Carbamates 409 14.4.4 alpha-Lithiated Allylic Carbamates 415 14.4.5 alpha-Lithiated Epoxides 415 14.5 alpha-Nitrogen-Stabilized Organolithiums 418 14.5.1 alpha-Lithiated Aziridines 418 14.6 Conclusion and Outlook 420 References 421 Further Reading 422 15 Lithiated Aza-Heterocycles in Modern Synthesis 423 Yves Fort and Corinne Comoy 15.1 Introduction 423 15.2 Direct Metallation with Lithiated Bases versus Nucleophilic Addition to Bare Pyridines and Analogs 424 15.3 Metallation of Dipolar Adducts of Pyridines (N Oxides or BF3 Adducts) 429 15.4 Halogen--Metal Exchange in Aza-Heterocyclic Series 430 15.5 Directed Ortho-Metallation (DoM) of Aza-Heterocycles 432 15.6 Halogen Dance: A Useful Side Reaction 435 15.7 Lateral and Remote Metallations 437 15.8 Lithiation Investigations of the Nicotinic Unit 440 15.9 Miscellaneous Examples of Various Heteroaryllithium Reagents as Key Intermediates in Organic Synthesis 445 15.10 Conclusion and Outlook 452 References 453 16 Lithium Compounds in Cross-Coupling Reactions 463 Masaki Shimizu 16.1 Introduction 463 16.2 Cross-Coupling Reactions of Organolithium Reagents 464 16.3 Cross-Coupling Reactions of Lithium Enolates 474 16.4 Cross-Coupling Reactions of Lithium Amides 481 16.5 Cross-Coupling Reactions of Lithium Thiolates 484 16.6 Conclusion and Outlook 486 References 488 17 Microreactor Technology in Lithium Chemistry 491 Aiichiro Nagaki and Jun-Ichi Yoshida 17.1 Introduction 491 17.2 Characteristic Features of Flow Microreactors 492 17.3 Control of Unstable Organolithiums Using Flow Microreactors 493 17.4 Protecting-Group-Free Synthesis Using Flow Microreactors 497 17.5 Stereoselective Reactions Based on Control of Configurationally Unstable Organollithiums Using Flow Microreactors 499 17.6 Switching Reaction Pathways of Organolithiums Using Flow Microreactors 499 17.7 Reaction Integration Using Flow Microreactors 501 17.8 Controlled/Living Anionic Polymerization of Vinyl Monomers Using Organolithium Initiators in Flow Microreactors 503 17.8.1 Controlled/Living Anionic Polymerization of Styrenes 503 17.8.2 Controlled/Living Anionic Polymerization of Alkyl Methacrylates Using Flow Microreactors 506 17.8.3 Controlled/Living Anionic Block Copolymerization of Styrenes and Alkyl Methacrylates Using Integrated Flow Microreactors 508 17.8.4 Controlled/Living Anionic Polymerization of tert-Butyl Acrylates Using Flow Microreactors 509 17.9 Conclusion and Outlook 509 References 510 18 Practical Aspects of Organolithium Chemistry 513 Leonardo Degennaro, Arianna Giovine, Laura Carroccia, and Renzo Luisi 18.1 Introduction 513 18.2 General Preparations of Organolithium Compounds 514 18.2.1 Reduction with Lithium Metal 514 18.2.2 Exchange Reaction from Halides or Organometallics (Transmetalation) 515 18.2.3 Metalation by H/Li Permutation (Deprotonation) 516 18.2.4 Addition of Organolithiums to Unsaturated Systems 517 18.3 Practical Aspects Related to the Use of Organolithiums 518 18.3.1 Stability and Reactivity of Organolithiums 518 18.3.2 Commercially Available Organolithium Compounds 522 18.3.3 Titration of Organolithiums 523 18.4 NMR Analysis of Organolithium Reagents 530 18.5 Hazards Associated with Organolithium Compounds 531 18.6 Setting up of Experiments Using Organolithiums 532 18.7 Transferring Organolithiums 533 18.7.1 Syringe Technique 534 18.7.2 Cannula Technique 535 18.7.3 Conclusion and Outlook 536 References 537 Further Reading 538 Index 539


Szczegóły: Lithium Compounds in Organic Synthesis

Tytuł: Lithium Compounds in Organic Synthesis
Producent: VCH
ISBN: 9783527333431
Rok produkcji: 2014
Ilość stron: 576
Oprawa: Twarda
Waga: 1.37 kg


Recenzje: Lithium Compounds in Organic Synthesis

Zaloguj się
Przypomnij hasło
×
×