Biotechnology of Lactic Acid Bacteria

Książka

Biotechnology of Lactic Acid Bacteria

  • Wydawnictwo: John Wiley
  • Rok wydania: 2015
  • ISBN: 9781118868409
  • Ilość stron: 392
  • Oprawa: Twarda
Wysyłka:
Niedostępna
Cena katalogowa 762,00 PLN brutto
Cena dostępna po zalogowaniu
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×
Cena 762,00 PLN
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×

Opis: Biotechnology of Lactic Acid Bacteria

Lactic acid bacteria (LAB) have historically been used as starter cultures for the production of fermented foods, especially dairy products. Over recent years, new areas have had a strong impact on LAB studies: the application of omics tools; the study of complex microbial ecosystems, the discovery of new LAB species, and the use of LAB as powerhouses in the food and medical industries. This second edition of Biotechnology of Lactic Acid Bacteria: Novel Applications addresses the major advances in the fields over the last five years. Thoroughly revised and updated, the book includes new chapters. Among them: * The current status of LAB systematics; * The role of LAB in the human intestinal microbiome and the intestinal tract of animals and its impact on the health and disease state of the host; * The involvement of LAB in fruit and vegetable fermentations; * The production of nutraceuticals and aroma compounds by LAB; and * The formation of biofilms by LAB. This book is an essential reference for established researchers and scientists, clinical and advanced students, university professors and instructors, nutritionists and food technologists working on food microbiology, physiology and biotechnology of lactic acid bacteria.List of Contributors xiii Preface xviii 1. Updates on Metabolism in Lactic Acid Bacteria in Light of Omic Technologies 1 Magdalena Kowalczyk, Baltasar Mayo, Maria Fernandez, and Tamara Aleksandrzak-Piekarczyk 1.1. Sugar Metabolism 1 1.1.1. Practical Aspects of Sugar Catabolism 3 1.2. Citrate Metabolism and Formation of Aroma Compounds 4 1.2.1. Citrate Transport 4 1.2.2. Conversion of Citrate into Pyruvate and Production of Aroma Compounds 6 1.2.3. Conversion of Citrate into Succinate 6 1.2.4. Bioenergetics of Citrate Metabolism 6 1.3. The Proteolytic System of Lactic Acid Bacteria 6 1.3.1. Protein Degradation 7 1.3.2. Peptidases 8 1.3.3. Technological Applications of the Proteolytic System 10 1.3.4. Amino Acid Catabolism 10 1.4. LAB Metabolism in Light of Genomics Comparative Genomics and Metagenomics 12 1.5. Novel Aspects of Metabolism Regulation in the Post ]genomic Age 12 1.6. Functional Genomics and Metabolism 16 1.6.1. Transcriptomics Proteomics and Metabolomics 16 1.6.2. Global Phenotypic Characterization of Microbial Cells 17 1.7. Systems Biology of LAB 17 Acknowledgments 18 References 18 2. Systematics of Lactic Acid Bacteria: Current Status 25 Giovanna E. Felis, Elisa Salvetti, and Sandra Torriani 2.1. Families and Genera of Lactic Acid Bacteria 25 2.2. A Focus on the Family Lactobacillaceae 27 2.3. Taxonomic Tools in the Genomic Era 29 References 30 3. Genomic Evolution of Lactic Acid Bacteria: From Single Gene Function to the Pan ]genome 32 Grace L. Douglas, M. Andrea Azcarate-Peri,l and Todd R. Klaenhammer 3.1. The Genomics Revolution 32 3.2. Genomic Adaptations of LAB to the Environment 33 3.2.1. LAB Evolution in the Dairy Environment 33 3.2.2. LAB Evolution in Vegetable and Meat Fermentations 34 3.2.3. Fast ]evolving LAB 35 3.2.4. LAB in the GI Tract 35 3.3. Probiotic Islands ? 36 3.4. Stress Resistance and Quorum Sensing Mechanisms 39 3.5. The Impact of Genome Sequencing on Characterization Taxonomy and Pan ]genome Development of Lactic Acid Bacteria 40 3.6. Functional Genomic Studies to Unveil Novel LAB Utilities 45 3.7. Conclusions 47 References 47 4. Lactic Acid Bacteria: Comparative Genomic Analyses of Transport Systems 55 Graciela L. Lorca, Taylor A. Twiddy, and Milton H. Saier Jr. 4.1. Introduction 55 4.2. Channel ]forming Proteins 56 4.3. The Major Facilitator Superfamily 59 4.4. Other Large Superfamilies of Secondary Carriers 60 4.5. ABC Transporters 64 4.6. Heavy Metal Transporters 65 4.7. P-type ATPases in Prokaryotes 68 4.8. The Prokaryote-specific Phosphotransferase System (PTS) 68 4.9. Multidrug Resistance Pumps 71 4.10. Nutrient Transport in LAB 71 4.11. Conclusions and Perspectives 72 Note 73 Acknowledgments 73 References 73 5. Novel Developments in Bacteriocins from Lactic Acid Bacteria 80 Ingolf F. Nes, Christina Gabrielsen, Dag A. Brede, and Dzung B. Diep 5.1. Introduction 80 5.2. Characteristics and Classification of Bacteriocins 80 5.2.1. Class Ia: Lantibiotics 81 5.2.2. Class II: The Non-lantibiotics 81 5.3. Mode of Action 84 5.4. Bacteriocin Resistance 86 5.5. Applications 88 5.5.1. Opportunities and Hurdles in Application of Bacteriocins 88 5.5.2. Application of Bacteriocins in Medical-related and Personal Hygiene Products 88 5.5.3. Bacteriocin ]producing Probiotics 90 5.6. Future Perspectives 92 References 93 6. Bacteriophages of Lactic Acid Bacteria and Biotechnological Tools 100 Beatriz Martinez, Pilar Garcia, Ana Rodriguez, Mariana Piuri, and Raul R. Raya 6.1. Introduction 100 6.2. Bacteriophages of Lactic Acid Bacteria 101 6.2.1. Classification of Lactococcal Phages 103 6.3. Antiphage Strategies 103 6.3.1. Natural Mechanisms of Phage Resistance 103 6.3.2. Genetically Engineered Antiphage Systems 105 6.4. Phage-Based Molecular Tools 106 6.4.1. Phage Integrases and Integration Vectors 106 6.4.2. CRISPR Applications 108 6.4.3. Recombineering 110 6.5. LAB Phages as Biocontrol Tools 113 6.6. Conclusions 113 References 113 7. Lactic Acid Bacteria and the Human Intestinal Microbiome 120 Francois P. Douillard and Willem M. de Vos 7.1. Introduction 120 7.2. Ecology of the Human Intestinal Tract 121 7.2.1. The Human Microbiome in the Upper and Lower Intestinal Tract 121 7.2.2. Lactic Acid Bacteria Associated with the Human Intestine 122 7.2.3. Metagenomic Studies of the Intestine in Relation to LAB 123 7.3. A Case Study: The Lactobacillus rhamnosus Species 124 7.3.1. Genomic Diversity of Lact. rhamnosus and Intestinal Adaptation 124 7.3.2. Lact. rhamnosus Metabolism and Adaptation to the Intestine 126 7.3.3. Host Interaction Factors in Lact. rhamnosus 127 7.3.4. The Lact. rhamnosus Species: Autochthonous or Allochthonous in the Human Intestine? 127 7.4. Concluding Perspectives and Future Directions 129 Acknowledgments 130 References 130 8. Probiotics and Functional Foods in Immunosupressed Hosts 134 Ivanna Novotny Nunez, Martin Manuel, Palomar Alejandra de Moreno de LeBlanc, Carolina Maldonado Galdeano, and Gabriela Perdigon 8.1. Introduction 134 8.2. Probiotic Fermented Milk in a Malnutrition Model 135 8.3. Probiotic Administration in Stress Process 138 8.4. Conclusions 140 Acknowledgments 141 References 141 9. Lactic Acid Bacteria in Animal Production and Health 144 Damien Bouchard, Sergine Even, and Yves Le Loir 9.1. Introduction 144 9.2. Lactic Acid Bacteria and Probiotics 145 9.3. Classifications and Regulatory Criteria of Probiotics in Animal Health 146 9.4. Probiotic LAB and Animal Production Sectors 147 9.4.1. Probiotics in Ruminants 147 9.4.2. Probiotics in Pigs 150 9.4.3. Probiotics in Poultry 152 9.5. Conclusions 154 References 154 10. Proteomics for Studying Probiotic Traits 159 Rosa Anna Siciliano and Maria Fiorella Mazzeo 10.1. Introduction 159 10.2. Mass Spectrometric Methodologies in Proteomics 160 10.2.1. The Classical Approach: 2-DE Separation and Protein Identification by Mass Spectrometry 160 10.2.2. Gel-Free Proteomic Approaches 160 10.3. Proteomics for Studying Molecular Mechanisms of Probiotic Action 161 10.3.1. Adaptation Mechanisms to the GIT Environment 161 10.3.2. Adhesion Mechanisms to the Host Mucosa 162 10.3.3. Molecular Mechanisms of Probiotic Immunomodulatory Effects 164 10.3.4. Probiotics and Prebiotics 164 10.4. Concluding Remarks and Future Directions 165 References 166 11. Engineering Lactic Acid Bacteria and Bifidobacteria for Mucosal Delivery of Health Molecules 170 Thibault Allain, Camille Aubry, Jane M. Natividad, Jean-Marc Chatel, Philippe Langella, and Luis G. Bermudez-Humaran 11.1. Introduction 170 11.2. Lactococcus lactis: A Pioneer Bacterium 171 11.3. Lactobacillus spp. as a Delivery Vector 171 11.4. Bifidobacteria as a New Live Delivery Vehicle 171 11.5. Engineering Genetic Tools for Protein and DNA Delivery 172 11.5.1. Cloning Vectors 172 11.5.2. Expression Systems 173 11.6. Therapeutic Applications 176 11.6.1. Inflammatory Bowel Disease (IBD) 176 11.6.2. Anti-protease Enzyme-producing LAB: The Tole of Elafin 176 11.6.3. Antioxidant Enzyme-producing Lactococci and Lactobacilli 177 11.7. Allergy 178 11.7.1. Use of LAB in Food Allergy 178 11.7.2. Allergic Airways Diseases 179 11.8. Autoimmune Diseases 180 11.8.1. Type 1 Diabetes Mellitus 180 11.8.2. Celiac Disease 180 11.9. Infectious Diseases 181 11.9.1. Mucosal Delivery of Bacterial Antigens 181 11.9.2. Mucosal Delivery of Viral Antigens 181 11.9.3. Parasitic Diseases 183 References 184 12. Lactic Acid Bacteria for Dairy Fermentations: Specialized Starter Cultures to Improve Dairy Products 191 Domenico Carminati, Giorgio Giraffa, Miriam Zago, Mariangeles Briggiler Marco, Daniela Guglielmotti, Ana Binetti, and Jorge Reinheimer 12.1. Introduction 191 12.2. Adjunct Cultures 191 12.2.1. Ripening Cultures 192 12.2.2. Protective Cultures 193 12.2.3. Probiotic Cultures 195 12.2.4. Exopolysaccharide-producing Starters 196 12.3. Phage-Resistant Starters 199 12.4. New Sources of Starter Strains 201 12.5. Conclusions 202 References 203 13. Lactobacillus sakei in Meat Fermentation 209 Marie-Christine Champomier-Verges and Monique Zagorec 13.1. Introduction 209 13.2. Genomics and Diversity of the Species Lactobacillus sakei 210 13.3. Post-genomic Vision of Meat Fitness Traits of Lactobacillus sakei 212 13.3.1. Energy Sources 212 13.3.2. Stress Response 213 13.4. Conclusions 214 References 214 14. Vegetable and Fruit Fermentation by Lactic Acid Bacteria 216 Raffaella Di Cagno, Pasquale Filannino, and Marco Gobbetti 14.1. Introduction 216 14.2. Lactic Acid Bacteria Microbiota of Raw Vegetables and Fruits 216 14.3. Fermentation of Vegetable Products 218 14.3.1. Spontaneous Fermentation 218 14.3.2. The Autochthonous Starters 218 14.4. Main Fermented Vegetable Products 221 14.4.1. Sauerkrauts 221 14.4.2. Kimchi 222 14.4.3. Pickled Cucumbers 223 14.5. Physiology and Biochemistry of LAB during Vegetable and Fruit Fermentation 223 14.5.1. Metabolic Adaptation by LAB during Plant Fermentation 224 14.6. Food Phenolic Compounds: Antimicrobial Activity and Microbial Responses 224 14.6.1. Effect of Phenolics on the Growth and Viability of LAB 224 14.6.2. Metabolism of Phenolics by LAB 226 14.7. Health-promoting Properties of Fermented Vegetables and Fruits 226 14.8. Alternative Sources of Novel Probiotics Candidates 226 14.9. Vehicles for Delivering Probiotics 228 14.10. Conclusions 229 References 229 15. Lactic Acid Bacteria and Malolactic Fermentation in Wine 231 Aline Lonvaud-Funel 15.1. Introduction 231 15.2. The Lactic Acid Bacteria of Wine 231 15.2.1. Origin 231 15.2.2. Species 232 15.2.3. Identification 232 15.2.4. Typing at Strain Level 233 15.2.5. Detection of Specific Strains 233 15.3. The Oenococcus Oeni Species 233 15.4. Evolution of Lactic Acid Bacteria during Winemaking 234 15.4.1. Interactions between Wine Microorganisms 235 15.4.2. Environmental Factors 236 15.5. Lactic Acid Bacteria Metabolism and its Impact on Wine Quality 237 15.5.1. Sugars 237 15.5.2. Carboxylic Acids 237 15.5.3. Amino Acids 240 15.5.4. Other Metabolisms with Sensorial Impact 241 15.6. Controlling the Malolactic Fermentation 242 15.7. Conclusions 243 References 244 16. The Functional Role of Lactic Acid Bacteria in Cocoa Bean Fermentation 248 Luc De Vuyst and Stefan Weckx 16.1. Introduction 248 16.2. Cocoa Crop Cultivation and Harvest 249 16.3. The Cocoa Pulp or Fermentation Substrate 250 16.4. Fresh Unfermented Cocoa Beans 251 16.5. Cocoa Bean Fermentation 252 16.5.1. Rationale 252 16.5.2. Farming Practices 253 16.6. Succession of Microorganisms during Cocoa Bean Fermentation 256 16.6.1. The Spontaneous Three-phase Cocoa Bean Fermentation Process 256 16.6.2. Yeast Fermentation 257 16.6.3. LAB Fermentation 260 16.6.4. AAB Fermentation 264 16.7. Biochemical Changes in the Cocoa Beans during Fermentation and Drying 266 16.8. Optimal Fermentation Course and End of Fermentation 268 16.9. Further Processing of Fermented Cocoa Beans 269 16.9.1. Drying of Fermented Cocoa Beans 269 16.9.2. Roasting of Fermented Dry Cocoa Beans 270 16.10. Use of Starter Cultures for Cocoa Bean Fermentation 271 16.10.1. Rationale 271 16.10.2. Experimental Use of Cocoa Bean Starter Cultures 271 16.11. Concluding Remarks 273 References 273 17. B-Group Vitamins Production by Probiotic Lactic Acid Bacteria 279 Jean Guy LeBlanc, Jonathan Emiliano Laino, Marianela Juarez del Valle, Graciela Savoy de Giori, Fernando Sesma, and Maria Pia Taranto 17.1. Introduction 279 17.2. B-Group Vitamins 280 17.2.1. Riboflavin (Vitamin B2 ) 281 17.2.2. Folates (Vitamin B9) 284 17.3. Probiotics In Situ 286 17.3.1. Vitamin B12 (Cobalamin) 288 17.3.2. Cobalamin Biosynthesis by Lactobacillus reuteri 289 17.4. Conclusions 291 Acknowledgments 292 References 292 18. Nutraceutics and High Value Metabolites Produced by Lactic Acid Bacteria 297 Elvira M. Hebert, Graciela Savoy de Giori, and Fernanda Mozzi 18.1. Introduction 297 18.2. Nutraceutics 298 18.2.1. Low-calorie Sugars 298 18.2.2. Short-Chain Fatty Acids 300 18.2.3. Conjugated Linoleic Acid (CLA) 301 18.2.4. Bioactive Peptides 301 18.2.5. Gamma-aminobutyric Acid (GABA) 303 18.2.6. Vitamins 305 18.3. Exopolysaccharides 306 18.4. Commodity Chemicals 307 18.5. Conclusions 308 References 308 19. Production of Flavor Compounds by Lactic Acid Bacteria in Fermented Foods 314 Anne Thierry, Tomislav Pogac ic, Magalie Weber, and Sylvie Lortal 19.1. Introduction 314 19.2. Flavor and Aroma Compounds 315 19.2.1. Volatile Compounds: Diversity Analytical Methods 315 19.2.2. Contribution of Volatile Aroma Compounds to Flavor 316 19.2.3. Origin of Aroma Compounds 316 19.3. LAB of Fermented Foods and their Role in Flavor Formation 316 19.3.1. Biochemical Processes of Flavor Compound Formation in Food and Potential of LAB 324 19.3.2. Flavor Compounds Produced from Carbohydrate Fermentation by LAB 324 19.3.3. Flavor Compounds from Amino Acid Conversion by LAB 326 19.3.4. Flavor Compounds from Lipids in LAB 327 19.3.5. Synthesis of Esters 328 19.3.6. Interspecies and Intraspecies Variations of Aroma Compound Production 328 19.4. Biotic and Abiotic Factors Modulating the Contribution of LAB to Flavor Formation 331 19.4.1. General Scheme of Flavor Formation in Fermented Foods In Situ 331 19.4.2. Factors Modulating the Expression of the Flavor-related Activities of LAB 332 19.4.3. Factors Determining the Real Contribution of LAB to Food Flavor 333 19.5. Conclusions and Research Perspectives 333 References 334 20. Lactic Acid Bacteria Biofilms: From their Formation to their Health and Biotechnological Potential 341 Jean-Christophe Piard and Romain Briandet 20.1. Lactic Acid Bacteria Biofilms are Ubiquitous in a Wide Variety of Environments from Nature to Domesticated Settings 341 20.2. Biofilm Life Cycle and Bacterial Factors Involved in LAB Biofilm Lifestyle 346 20.3. Health and Biotechnological Potential of LAB Biofilms and Underlying Mechanisms 352 20.4. Conclusions 354 Acknowledgments 355 References 355 Index 362


Szczegóły: Biotechnology of Lactic Acid Bacteria

Tytuł: Biotechnology of Lactic Acid Bacteria
Wydawnictwo: John Wiley
ISBN: 9781118868409
Rok wydania: 2015
Ilość stron: 392
Oprawa: Twarda
Waga: 0.75 kg


Recenzje: Biotechnology of Lactic Acid Bacteria

Zaloguj się
Przypomnij hasło
×
×