Miniatury matematyczne 90
Andrzej Sendlewski, Agnieszka Krause, Mieczysław K. Mentzen
Miniatury matematyczne 90
Andrzej Sendlewski, Agnieszka Krause, Mieczysław K. Mentzen
- Wydawnictwo: Aksjomat
- EAN: 9788366838574
- Ilość stron: 64
- Format: 16.3x24.0cm
- Oprawa: Miękka
Niedostępna
Opis: Miniatury matematyczne 90 - Andrzej Sendlewski, Agnieszka Krause, Mieczysław K. Mentzen
Komitet organizacyjny konkursu Kangur Matematyczny od 30 lat przygotowuje corocznie zestaw książeczek pod wspólną nazwą Miniatury Matematyczne. Od długiego już czasu ustalił się zwyczaj, aby każda edycja składała się z czterech tomików — każdy przeznaczony dla uczniów w przedziałach wiekowych orientacyjnie odpowiadających kolejnym kategoriom konkursu. Części serii przygotowane z myślą o młodszych klasach na ogół stanowią pewną całość spiętą wspólnym tematem lub wspólną myślą przewodnią. Te zaś, które dedykowane są starszej młodzieży, z reguły składają się z trzech lub czterech opracowań różniących się tematyką — nieraz dość znacznie. Takim właśnie tomikiem jest niniejszy, skierowany głównie do uczniów najstarszych klas szkół podstawowych. Znajdują się w nim trzy artykuły różniące się tematyką, stylem a także stopniem trudności.
Pierwsza miniatura „Zastosowania kongruencji liczbowych” dotyczy, zgodnie z tytułem, pojęcia kongruencji i ich niektórych zastosowań. Początkowe rozdziały bazują na znanych ze szkoły informacjach dotyczących teorii podzielności liczb naturalnych, rozszerzając je na cały zbiór liczb całkowitych. Następnie autor wprowadza tytułowe pojęcie, a tym samym nową symbolikę wraz z zestawem reguł posługiwania się nią. Używanie nieznanego wcześniej języka opisu pojęć matematycznych jest zawsze trudne, dlatego treści teoretyczne opatrzone są wieloma przykładami liczbowymi. Kongruencje bardzo przydają się do zgrabnego zapisu rozwiązań problemów dotyczących podzielności i dzielenia z resztą liczb całkowitych, co autor pokazał w kolejnych rozdziałach swojego artykułu.
Kolejna miniatura o intrygującym tytule „Podchodzenie nieskończoności” przenosi Czytelnika w zupełnie inną część matematycznego uniwersum. Z dobrze znanego świata liczb całkowitych, w którym zarówno pojęcie wartości liczb jak i ich równości jest zrozumiałe, przechodzimy w rzeczywistość, w której pojęcia te przestają mieć swoje tradycyjne znaczenie. Na początku artykułu dowiadujemy się o tym, jak w przeszłych wiekach matematycy dochodzili do uznania konieczności wprowadzenia do rozważań naukowych obiektu abstrakcyjnego symbolizującego „wielkość” przewyższającą wartość każdej liczby. W czasach starożytnych przeczucie istnienia „jakiejś nieskończoności” było domeną takich dziedzin życia jak filozofia i religia, podczas gdy do wyrażenia ogromnej i trudno wyobrażalnej mnogości obiektów realnych używano nazw wielkich liczb nie zawsze zgodnych ze stanem faktycznym. W procesie rozwoju matematyki taki sposób opisu okazał się dla pewnych modeli niewystarczający, co doprowadziło do wprowadzenia pojęcia nieskończoności. Jednak pojęcie to nie jest łatwe do wyobrażenia, nie podlega tradycyjnym regułom porównywania wartości liczb i wykonywania obliczeń, dlatego dopóki nie zostało ono dookreślone w czasach nowożytnych, wielokrotnie „sprowadzało na manowce nawet tęgie głowy”, jak żartobliwie stwierdza autor. W dalszej części przedstawiono podstawy teoretyczne teorii zbiorów nieskończonych, podano przykłady takich zbiorów, a także wskazówki jak nieskończoną liczbę ich elementów uzasadniać. Miniatura ta jest najbardziej zaawansowana merytorycznie w całym tomiku i z powodzeniem może być również polecana licealistom.
Z wyobraźnią rozgrzaną rozważaniami o nieskończoności i gotową na dalszą gimnastykę Czytelnik przejdzie do lektury kolejnego artykułu o tytule „Wyobraźnia przestrzenna”. Tym razem jednak będziemy mogli skupić wzrok i myśl na rysunkach brył przestrzennych, a w razie potrzeby na modelach, które zawsze można wykonać, dotknąć i obejrzeć. Zamierzeniem autorki jest wypełnienie pewnej luki, jaką zauważa w programie szkolnym dotyczącym tej tematyki i pokazanie, że nawet przy pomocy najprostszych brył, takich jak prostopadłościany, można ilustrować wiele ciekawych zagadnień. Zadania prezentowane są wraz z rozwiązaniami i opatrzone rysunkami. Zostały one podzielone na kilka kategorii, z których każda kształtuje wyobraźnię przestrzenną w innym obszarze.
Szczegóły: Miniatury matematyczne 90 - Andrzej Sendlewski, Agnieszka Krause, Mieczysław K. Mentzen
Nazwa: Miniatury matematyczne 90
Autor: Andrzej Sendlewski, Agnieszka Krause, Mieczysław K. Mentzen
Wydawnictwo: Aksjomat
Seria: Miniatury matematyczne
Kod paskowy: 9788366838574
Kategoria: Podręczniki
Przedmiot: Matematyka
Języki: polski
Ilość stron: 64
Format: 16.3x24.0cm
Oprawa: Miękka
Waga: 0.125 kg