Materials for Low-Temperature Fuel Cells

Materials for Low-Temperature Fuel Cells

  • Producent: VCH
  • Rok produkcji: 2015
  • ISBN: 9783527330423
  • Ilość stron: 272
  • Oprawa: Twarda
Wysyłka:
Niedostępna
Cena katalogowa 528,00 PLN brutto
Cena dostępna po zalogowaniu
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×
Cena 528,00 PLN
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×

Opis: Materials for Low-Temperature Fuel Cells

There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part of the ?Materials for Sustainable Energy & Development? series. Key Materials in Low-Temperature Fuel Cells brings together world leaders and experts in this field and provides a lucid description of the materials assessment of fuel cell technologies. With an emphasis on the technical development and applications of key materials in low-temperature fuel cells, this text covers fundamental principles, advancement, challenges, and important current research themes. Topics covered include: proton exchange membrane fuel cells, direct methanol and ethanol fuel cells, microfluidic fuel cells, biofuel cells, alkaline membrane fuel cells, functionalized carbon nanotubes as catalyst supports, nanostructured Pt catalysts, non-PGM catalysts, membranes, and materials modeling. This book is an essential reference source for researchers, engineers and technicians in academia, research institutes and industry working in the fields of fuel cells, energy materials, electrochemistry and materials science and engineering.

Series Editor s Preface XIII

About the Series Editor XV

About the Volume Editors XVII

List of Contributors XIX

1 Key Materials for Low-Temperature Fuel Cells: An Introduction 1 Bradley P. Ladewig, Benjamin M. Asquith, and Jochen Meier-Haack

Reference 2

2 Alkaline Anion Exchange Membrane Fuel Cells 3 Rhodri Jervis and Daniel J.L. Brett

2.1 Fuel Cells 3

2.2 PEM Fuel Cell Principles 4

2.2.1 Equilibrium Kinetics 4

2.2.2 Butler Volmer Kinetics 7

2.2.3 Exchange Current Density 8

2.2.4 The Fuel Cell Polarization Curve 10

2.3 Alkaline Fuel Cells 11

2.3.1 The ORR Mechanism 12

2.3.2 The HOR in Alkaline 13

2.3.3 The Aqueous Electrolyte AFC 15

2.3.4 The AAEM Fuel Cell 16

2.3.4.1 AAEM Principles 16

2.3.4.2 Alkaline Membranes 17

2.3.4.3 AAEM Fuel Cell Examples 19

2.4 Summary 25

References 26

3 Catalyst Support Materials for Proton Exchange Membrane Fuel Cells 33 Xin Wang and Shuangyin Wang

3.1 Introduction 33

3.2 Current Status of Support Materials and Role of Carbon as Support in Fuel Cells 34

3.3 Novel Carbon Materials as Electrocatalyst Support for Fuel Cells 35

3.3.1 Mesoporous Carbon as Support Materials for Fuel Cells 35

3.3.2 Graphite Nanofibers as Support Materials for Fuel Cells 39

3.3.3 Carbon Nanotubes as Support Materials for Fuel Cells 42

3.3.4 Graphene as Support Materials for Fuel Cells 49

3.3.5 Nitrogen-Doped Carbon Materials 52

3.4 Conductive Metal Oxide as Support Materials 54

3.5 Metal Carbides and Metal Nitrides as Catalyst Supports 56

3.6 Conducting Polymer as Support Materials for Fuel Cells 57

3.7 Conducting Polymer-Grafted Carbon Materials 58

3.8 3M Nanostructured Thin Film as Support Materials for Fuel Cells 59

3.9 Summary and Outlook 60

References 61

4 Anode Catalysts for Low-Temperature Direct Alcohol Fuel Cells 69 Wenzhen Li

4.1 Introduction 69

4.2 Anode Catalysts for Direct Methanol Fuel Cells: Improved Performance of Binary and Ternary Catalysts 71

4.2.1 Principles of Direct Methanol Fuel Cells 71

4.2.2 Reaction Mechanisms and Catalysts for Methanol Electrooxidation 71

4.3 Anode Catalysts for Direct Ethanol Fuel Cells: Break C-C Bond to Achieve Complete 12-Electron-Transfer Oxidation 73

4.3.1 Principles of PEM-Direct Ethanol Fuel Cells 74

4.3.2 Reaction Mechanisms and Catalysts for Ethanol Electrooxidation 74

4.3.3 Anion Exchange Membrane-Based Direct Ethanol Fuel Cells (AEMDEFCs) 77

4.3.4 Anode Catalysts for AEM-DEFCs 78

4.4 Anode Catalysts for Direct Polyol Fuel Cells (Ethylene Glycol, Glycerol): Cogenerate Electricity and Valuable Chemicals Based on Anion Exchange Membrane Platform 79

4.4.1 Overview of Electrooxidation of Polyols 79

4.4.2 Reaction Mechanisms and Catalysts for Ethylene Glycol Electrooxidation 81

4.4.3 Reaction Mechanisms and Catalysts for Glycerol Electrooxidation 82

4.5 Synthetic Methods of Metal Electrocatalysts 84

4.5.1 Impregnation Method 86

4.5.2 Colloidal Method 87

4.5.2.1 Polyol Method 87

4.5.2.2 Organic-Phase Method 89

4.5.3 Microemulsion Method 90

4.5.4 Other Methods 90

4.6 Carbon Nanomaterials as Anode Catalyst Support 91

4.6.1 Carbon Nanotubes 91

4.6.2 Carbon Nanofibers 94

4.6.3 Ordered Mesoporous Carbons 94

4.6.4 Graphene Sheets 95

4.7 Future Challenges and Opportunities 96

Acknowledgments 97

References 97

5 Membranes for Direct Methanol Fuel Cells 111 Bradley P. Ladewig, Benjamin M. Asquith, and Jochen Meier-Haack

5.1 Introduction 111

5.2 Basic Principles of Direct Methanol Fuel Cell Operation 111

5.3 Membranes for Direct Methanol Fuel Cells 112

5.3.1 Perfluorosulfonic Acid Membranes 113

5.3.2 Poly(styrene)-Based Electrolytes 114

5.3.3 Poly(arylene ether)-Type Polymers 115

5.3.4 Poly(ether ether) Ketone-Type Polymers 115

5.3.5 Polybenzimidazoles 116

5.3.6 Polysulfones and Polyethersulfones 116

5.3.7 Polyimides 117

5.3.8 Grafted Polymer Electrolyte Membranes 117

5.3.9 Block Copolymers 117

5.3.10 Composite Polymer Membranes 118

5.4 Membrane Properties Summary 118

5.5 Conclusions 120

References 120

6 Hydroxide Exchange Membranes and Ionomers 125 Shuang Gu, Junhua Wang, Bingzi Zhang, Robert B. Kaspar, and Yushan Yan

6.1 Introduction 125

6.1.1 Definition 125

6.1.2 Functions 125

6.1.3 Features 126

6.2 Requirements 126

6.2.1 High Hydroxide Conductivity 126

6.2.2 Excellent Chemical Stability 127

6.2.3 Sufficient Physical Stability 127

6.2.4 Controlled Solubility 128

6.2.5 Other Important Properties 128

6.3 Fabrications and Categories 128

6.3.1 Polymer Functionalization 128

6.3.2 Monomer Polymerization 129

6.3.3 Membrane Radiation Grafting 129

6.3.4 Reinforcement Methods 130

6.4 Structure and Properties of Cationic Functional Group 130

6.4.1 Quaternary Nitrogen-Based Cationic Functional Groups 130

6.4.1.1 Tetraalkyl Ammonium 130

6.4.1.2 Cycloalkyl Ammonium 132

6.4.1.3 Pyridinium 133

6.4.1.4 Guanidinium 133

6.4.1.5 Imidazolium 133

6.4.2 Quaternary Phosphorus-Based Cationic Functional Groups 134

6.5 Structure and Properties of Polymer Main Chain 134

6.5.1 Chemical Structure 134

6.5.1.1 Aromatic Main-Chain Polymers 137

6.5.1.2 Aliphatic Main-Chain Polymers 137

6.5.2 Sequential Structure 138

6.6 Structure and Properties of Chemical Cross-Linking 138

6.6.1 Chemical Structure 138

6.6.2 Physical Structure 140

6.7 Prospective 140

References 141

7 Materials for Microbial Fuel Cells 145 Yanzhen Fan and Hong Liu

7.1 Introduction 145

7.2 MFC Configuration 146

7.3 Anode Materials 147

7.3.1 Solid Carbon Materials 147

7.3.2 Granular Carbon Materials 148

7.3.3 Fiber Carbon Materials 148

7.3.4 Porous Carbon Materials 149

7.3.5 Modification of Anode Materials 149

7.4 Cathode 150

7.4.1 Catalyst Binders 151

7.4.2 Diffusion Layers 152

7.4.3 Current Collector 152

7.4.4 Cathode Fouling 152

7.4.5 Cathode Catalysts 153

7.4.5.1 Pt Cathode Modified with Nanomaterials 153

7.4.5.2 Cathode with Non-Pt Metal Catalyst 153

7.4.5.3 Carbon Cathodes 154

7.4.5.4 Conductive Polymers 155

7.4.5.5 Biocathodes 155

7.5 Separators 156

7.5.1 Cation Exchange Membranes 156

7.5.2 Anion Exchange Membranes 157

7.5.3 Biopolar Membranes 157

7.5.4 Filtration Membranes 157

7.5.5 Porous Fabrics 158

7.6 Outlook 158

References 160

8 Bioelectrochemical Systems 167 Falk Harnisch and Korneel Rabaey

8.1 Bioelectrochemical Systems and Bioelectrocatalysis 167

8.2 On the Nature of Microbial Bioelectrocatalysis 167

8.3 Microbial Electron Transfer Mechanisms 169

8.3.1 Direct Electron Transfer 170

8.3.2 Mediated Electron Transfer (MET) 172

8.3.2.1 MET Based on Secondary Metabolites 173

8.3.2.2 MET Based on Primary Metabolites 173

8.4 From Physiology to Technology: Microbial Bioelectrochemical Systems 173

8.5 Application Potential of BES Technology 175

8.6 Characterization of BESs and Microbial Bioelectrocatalysts 176

8.6.1 Electrochemical Methods 176

8.6.1.1 Polarization Curves 176

8.6.1.2 Voltammetry 177

8.6.1.3 Spectroelectrochemical and Further Techniques 178

8.6.2 Biological Methods 178

8.7 Conclusions 179

Acknowledgments 180

References 180

9 Materials for Microfluidic Fuel Cells 185 Seyed Ali Mousavi Shaegh and Nam-Trung Nguyen

9.1 Introduction 185

9.2 Fundamentals 187

9.3 Membraneless LFFC Designs and the Materials in Use 190

9.3.1 Flow Architecture and Fabrication of Flow-Over Design 197

9.3.2 Flow Architecture and Fabrication of Flow-Through Design 200

9.3.3 Flow Architecture and Fabrication of LFFC with Air-Breathing Cathode 201

9.3.4 Performance Comparison 203

9.4 Fuel, Oxidant, and Electrolytes 203

9.4.1 Fuel Types 203

9.4.2 Oxidant Types 207

9.4.3 Electrolyte Types 208

9.5 Conclusions 210

References 211

10 Progress in Electrocatalysts for Direct Alcohol Fuel Cells 215 Luhua Jiang and Gongquan Sun

10.1 Introduction 215

10.2 Developing an Effective Method to Prepare Electrocatalysts 216

10.2.1 Carbon-Supported Platinum 216

10.2.2 Carbon-Supported Platinum Ruthenium 217

10.3 Electrocatalysts for ORR 218

10.3.1 Highly Active PtFe Electrocatalysts for ORR 218

10.3.2 Methanol-Tolerant PtPd Electrocatalysts for ORR 219

10.4 Electrocatalysts for MOR 222

10.4.1 Composition Screening for Electrocatalysts toward MOR 222

10.4.2 Carbon-Supported Platinum Ruthenium for MOR 223

10.5 Electrocatalysts for Ethanol Electrooxidation 226

10.5.1 Composition Screening for Electrocatalysts toward EOR 227

10.5.2 PtSn/C for Ethanol Electrooxidation 229

10.5.3 IrSn/C for Ethanol Electrooxidation 234

10.6 Conclusions 235

References 235

Index 241


Szczegóły: Materials for Low-Temperature Fuel Cells

Tytuł: Materials for Low-Temperature Fuel Cells
Producent: VCH
ISBN: 9783527330423
Rok produkcji: 2015
Ilość stron: 272
Oprawa: Twarda
Waga: 0.74 kg


Recenzje: Materials for Low-Temperature Fuel Cells

Zaloguj się
Przypomnij hasło
×
×