K3 Surfaces and Their Moduli 2016

Książka

K3 Surfaces and Their Moduli 2016

  • Wydawnictwo: Birkhauser
  • Rok wydania: 2016
  • ISBN: 9783319299587
  • Ilość stron: 399
  • Oprawa: Twarda
Wysyłka:
Niedostępna
Cena katalogowa 511,00 PLN brutto
Cena dostępna po zalogowaniu
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×
Cena 511,00 PLN
Dodaj do Schowka
Zaloguj się
Przypomnij hasło
×
×

Opis: K3 Surfaces and Their Moduli 2016

This book provides an overview of the latest developments concerning the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like "The Moduli Space of Curves" and "Moduli of Abelian Varieties," which originated from conferences on the islands Texel and Schiermonnikoog and which have become classics. K3 surfaces and their moduli form a central topic in algebraic geometry and arithmetic geometry, and have recently attracted a lot of attention from both mathematicians and theoretical physicists. Advances in this field often result from mixing sophisticated techniques from algebraic geometry, lattice theory, number theory, and dynamical systems. The topic has received significant impetus due to recent breakthroughs on the Tate conjecture, the study of stability conditions and derived categories, and links with mirror symmetry and string theory. At the same time, the theory of irreducible holomorphic symplectic varieties, the higher dimensional analogues of K3 surfaces, has become a mainstream topic in algebraic geometry. Contributors: S. Boissiere, A. Cattaneo, I. Dolgachev, V. Gritsenko, B. Hassett, G. Heckman, K. Hulek, S. Katz, A. Klemm, S. Kondo, C. Liedtke, D. Matsushita, M. Nieper-Wisskirchen, G. Oberdieck, K. Oguiso, R. Pandharipande, S. Rieken, A. Sarti, I. Shimada, R. P. Thomas, Y. Tschinkel, A. Verra, C. Voisin.Introduction.- Samuel Boissiere, Andrea Cattaneo, Marc Nieper-Wisskirchen, and Alessandra Sarti: The automorphism group of the Hilbert scheme of two points on a generic projective K3 surface.- Igor Dolgachev: Orbital counting of curves on algebraic surfaces and sphere packings.- V. Gritsenko and K. Hulek: Moduli of polarized Enriques surfaces.- Brendan Hassett and Yuri Tschinkel: Extremal rays and automorphisms of holomorphic symplectic varieties.- Gert Heckman and Sander Rieken: An odd presentation for W(E_6).- S. Katz, A. Klemm, and R. Pandharipande, with an appendix by R. P. Thomas: On the motivic stable pairs invariants of K3 surfaces.- Shigeyuki Kondo: The Igusa quartic and Borcherds products.- Christian Liedtke: Lectures on supersingular K3 surfaces and the crystalline Torelli theorem.- Daisuke Matsushita: On deformations of Lagrangian fibrations.- G. Oberdieck and R. Pandharipande: Curve counting on K3 x E, the Igusa cusp form X_10, and descendent integration.- Keiji Oguiso: Simple abelian varieties and primitive automorphisms of null entropy of surfaces.- Ichiro Shimada: The automorphism groups of certain singular K3 surfaces and an Enriques surface.- Alessandro Verra: Geometry of genus 8 Nikulin surfaces and rationality of their moduli.- Claire Voisin: Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kahler varieties.


Szczegóły: K3 Surfaces and Their Moduli 2016

Tytuł: K3 Surfaces and Their Moduli 2016
Wydawnictwo: Birkhauser
ISBN: 9783319299587
Rok wydania: 2016
Ilość stron: 399
Oprawa: Twarda
Waga: 0.78 kg


Recenzje: K3 Surfaces and Their Moduli 2016

Zaloguj się
Przypomnij hasło
×
×