Carbon Nanomaterials for Advanced Energy Systems
W. Lu
Carbon Nanomaterials for Advanced Energy Systems
W. Lu
- Producent: John Wiley
- Rok produkcji: 2015
- ISBN: 9781118580783
- Ilość stron: 472
- Oprawa: Twarda
Niedostępna
Opis: Carbon Nanomaterials for Advanced Energy Systems - W. Lu
With the proliferation of electronic devices, the world will need to double its energy supply by 2050. This book addresses this challenge and discusses synthesis and characterization of carbon nanomaterials for energy conversion and storage. * Addresses one of the leading challenges facing society today as we steer away from dwindling supplies of fossil fuels and a rising need for electric power due to the proliferation of electronic products * Promotes the use of carbon nanomaterials for energy applications * Systematic coverage: synthesis, characterization, and a wide array of carbon nanomaterials are described * Detailed descriptions of solar cells, electrodes, thermoelectrics, supercapacitors, and lithium-ion-based storage * Discusses special architecture required for energy storage including hydrogen, methane, etc.List of Contributors xiii Preface xvii PART I Synthesis and characterization of carbon nanomaterials 1 1 Fullerenes, Higher Fullerenes, and their Hybrids: Synthesis, Characterization, and Environmental Considerations 3 1.1 Introduction, 3 1.2 Fullerene, Higher Fullerenes, and Nanohybrids: Structures and Historical Perspective, 5 1.2.1 C60 Fullerene, 5 1.2.2 Higher Fullerenes, 6 1.2.3 Fullerene -Based Nanohybrids, 7 1.3 Synthesis and Characterization, 7 1.3.1 Fullerenes and Higher Fullerenes, 7 1.3.1.1 Carbon Soot Synthesis, 7 1.3.1.2 Extraction, Separation, and Purification, 10 1.3.1.3 Chemical Synthesis Processes, 11 1.3.1.4 Fullerene -Based Nanohybrids, 12 1.3.2 Characterization, 12 1.3.2.1 Mass Spectroscopy, 12 1.3.2.2 NMR, 13 1.3.2.3 Optical Spectroscopy, 13 1.3.2.4 HPLC, 14 1.3.2.5 Electron Microscopy, 14 1.3.2.6 Static and Dynamic Light Scattering, 14 1.4 Energy Applications, 17 1.4.1 Solar Cells and Photovoltaic Materials, 17 1.4.2 Hydrogen Storage Materials, 19 1.4.3 Electronic Components (Batteries, Capacitors, and Open ]Circuit Voltage Applications), 20 1.4.4 Superconductivity, Electrical, and Electronic Properties Relevant to Energy Applications, 20 1.4.5 Photochemical and Photophysical Properties Pertinent for Energy Applications, 21 1.5 Environmental Considerations for Fullerene Synthesis and Processing, 21 1.5.1 Existing Environmental Literature for C60, 22 1.5.2 Environmental Literature Status for Higher Fullerenes and NHs, 24 1.5.3 Environmental Considerations, 24 1.5.3.1 Consideration for Solvents, 26 1.5.3.2 Considerations for Derivatization, 26 1.5.3.3 Consideration for Coatings, 27 References, 28 2 Carbon Nanotubes 47 2.1 Synthesis of Carbon Nanotubes, 47 2.1.1 Introduction and Structure of Carbon Nanotube, 47 2.1.2 Arc Discharge and Laser Ablation, 49 2.1.3 Chemical Vapor Deposition, 50 2.1.4 Aligned Growth, 52 2.1.5 Selective Synthesis of Carbon Nanotubes, 57 2.1.6 Summary, 63 2.2 Characterization of Nanotubes, 63 2.2.1 Introduction, 63 2.2.2 Spectroscopy, 63 2.2.2.1 Raman Spectroscopy, 63 2.2.2.2 Optical Absorption (UV ]Vis ]NIR), 66 2.2.2.3 Photoluminescence Spectroscopy, 68 2.2.3 Microscopy, 70 2.2.3.1 Scanning Tunneling Microscopy and Transmission Electron Microscopy, 70 2.3 Summary, 73 References, 73 3 Synthesis and Characterization of Graphene 85 3.1 Introduction, 85 3.2 Overview of Graphene Synthesis Methodologies, 87 3.2.1 Mechanical Exfoliation, 90 3.2.2 Chemical Exfoliation, 93 3.2.3 Chemical Synthesis: Graphene from Reduced Graphene Oxide, 97 3.2.4 Direct Chemical Synthesis, 102 3.2.5 CVD Process, 102 3.2.5.1 Graphene Synthesis by CVD Process, 103 3.2.5.2 Graphene Synthesis by Plasma CVD Process, 109 3.2.5.3 Grain and GBs in CVD Graphene, 110 3.2.6 Epitaxial Growth of Graphene on SiC Surface, 111 3.3 Graphene Characterizations, 113 3.3.1 Optical Microscopy, 114 3.3.2 Raman Spectroscopy, 116 3.3.3 High Resolution Transmission Electron Microscopy, 118 3.3.4 Scanning Probe Microscopy, 119 3.4 Summary and Outlook, 121 References, 122 4 Doping Carbon Nanomaterials with Heteroatoms 133 4.1 Introduction, 133 4.2 Local Bonding of the Dopants, 135 4.3 Synthesis of Heterodoped Nanocarbons, 137 4.4 Characterization of Heterodoped Nanotubes and Graphene, 139 4.5 Potential Applications, 146 4.6 Summary and Outlook, 152 References, 152 Part II Carbon Na nomaterials For Energy Conversion 163 5 High -Performance Polymer Solar Cells Containing Carbon Nanomaterials 165 5.1 Introduction, 165 5.2 Carbon Nanomaterials as Transparent Electrodes, 167 5.2.1 CNT Electrode, 168 5.2.2 Graphene Electrode, 169 5.2.3 Graphene/CNT Hybrid Electrode, 171 5.3 Carbon Nanomaterials as Charge Extraction Layers, 171 5.4 Carbon Nanomaterials in the Active Layer, 178 5.4.1 Carbon Nanomaterials as an Electron Acceptor, 178 5.4.2 Carbon Nanomaterials as Additives, 180 5.4.3 Donor/Acceptor Functionalized with Carbon Nanomaterials, 183 5.5 Concluding Remarks, 185 Acknowledgments, 185 References, 185 6 Graphene for Energy Solutions and Its Printable Applications 191 6.1 Introduction to Graphene, 191 6.2 Energy Harvesting from Solar Cells, 192 6.2.1 DSSCs, 193 6.2.2 Graphene and DSSCs, 195 6.2.2.1 Counter Electrode, 195 6.2.2.2 Photoanode, 198 6.2.2.3 Transparent Conducting Oxide, 199 6.2.2.4 Electrolyte, 200 6.3 Opv Devices, 200 6.3.1 Graphene and OPVs, 201 6.3.1.1 Transparent Conducting Oxide, 201 6.3.1.2 BHJ, 203 6.3.1.3 Hole Transport Layer, 204 6.4 Lithium -Ion Batteries, 204 6.4.1 Graphene and Lithium -Ion Batteries, 205 6.4.1.1 Anode Material, 205 6.4.1.2 Cathode Material, 209 6.4.2 Li S and Li O2 Batteries, 211 6.5 Supercapacitors, 212 6.5.1 Graphene and Supercapacitors, 213 6.6 Graphene Inks, 216 6.7 Conclusions, 219 References, 220 7 Quantum Dot and Heterojunction Solar Cells Containing Carbon Nanomaterials 237 7.1 Introduction, 237 7.2 QD Solar Cells Containing Carbon Nanomaterials, 238 7.2.1 CNTs and Graphene as TCE in QD Solar Cells, 238 7.2.1.1 CNTs as TCE Material in QD Solar Cells, 239 7.2.1.2 Graphene as TCE Material in QD Solar Cells, 240 7.2.2 Carbon Nanomaterials and QD Composites in Solar Cells, 241 7.2.2.1 C60 and QD Composites, 241 7.2.2.2 CNTs and QD Composites, 244 7.2.2.3 Graphene and QD Composites, 245 7.2.3 Graphene QDs Solar Cells, 247 7.2.3.1 Physical Properties of GQDs, 247 7.2.3.2 Synthesis of GQDs, 247 7.2.3.3 PV Devices of GQDs, 247 7.3 Carbon Nanomaterial/Semiconductor Heterojunction Solar Cells, 249 7.3.1 Principle of Carbon/Semiconductor Heterojunction Solar Cells, 249 7.3.2 a -C/Semiconductor Heterojunction Solar Cells, 250 7.3.3 CNT/Semiconductor Heterojunction Solar Cells, 252 7.3.4 Graphene/Semiconductor Heterojunction Solar Cells, 253 7.4 Summary, 261 References, 261 8 Fuel Cell Catalysts Based on Carbon Nanomaterials 267 8.1 Introduction, 267 8.2 Nanocarbon -Supported Catalysts, 268 8.2.1 CNT -Supported Catalysts, 268 8.2.2 Graphene -Supported Catalysts, 271 8.3 Interface Interaction between Pt Clusters and Graphitic Surface, 276 8.4 Carbon Catalyst, 281 8.4.1 Catalytic Activity for ORR, 281 8.4.2 Effect of N -Dope on O2 Adsorption, 283 8.4.3 Effect of N -Dope on the Local Electronic Structure for Pyridinic -N and Graphitic -N, 285 8.4.3.1 Pyridinic -N, 287 8.4.3.2 Graphitic -N, 288 8.4.4 Summary of Active Sites for ORR, 290 References, 291 PART III Carbon nanomaterials for energy storage 295 9 Supercapacitors Based on Carbon Nanomaterials 297 9.1 Introduction, 297 9.2 Supercapacitor Technology and Performance, 298 9.3 Nanoporous Carbon, 304 9.3.1 Supercapacitors with Nonaqueous Electrolytes, 304 9.3.2 Supercapacitors with Aqueous Electrolytes, 311 9.4 Graphene and Carbon Nanotubes, 321 9.5 Nanostructured Carbon Composites, 326 9.6 Other Composites with Carbon Nanomaterials, 327 9.7 Conclusions, 329 References, 330 10 Lithium -Ion Batteries Based on Carbon Nanomaterials 339 10.1 Introduction, 339 10.2 Improving Li -Ion Battery Energy Density, 344 10.3 Improvements to Lithium -Ion Batteries Using Carbon Nanomaterials, 345 10.3.1 Carbon Nanomaterials as Active Materials, 345 10.4 Carbon Nanomaterials as Conductive Additives, 346 10.4.1 Current and SOA Conductive Additives, 346 10.5 Swcnt Additives to Increase Energy Density, 348 10.6 Carbon Nanomaterials as Current Collectors, 351 10.6.1 Current Collector Options, 351 10.7 Implementation of Carbon Nanomaterial Current Collectors for Standard Electrode Composites, 354 10.7.1 Anode: MCMB Active Material, 354 10.7.2 Cathode: NCA Active Material, 356 10.8 Implementation of Carbon Nanomaterial Current Collectors for Alloying Active Materials, 356 10.9 Ultrasonic Bonding for Pouch Cell Development, 358 10.10 Conclusion, 359 References, 362 11 Lithium/Sulfur Batteries Based on Carbon Nanomaterials 365 11.1 Introduction, 365 11.2 Fundamentals of Lithium/Sulfur Cells, 366 11.2.1 Operating Principles, 366 11.2.2 Scientific Problems, 368 11.2.2.1 Dissolution and Shuttle Effect of Lithium Polysulfides, 369 11.2.2.2 Insulating Nature of Sulfur and Li2S, 369 11.2.2.3 Volume Change of the Sulfur Electrode during Cycling, 369 11.2.3 Research Strategy, 369 11.3 Nanostructure Carbon Sulfur, 370 11.3.1 Porous Carbon Sulfur Composite, 371 11.3.2 One -Dimensional Carbon Sulfur Composite, 373 11.3.3 Two -Dimensional Carbon (Graphene) Sulfur, 375 11.3.4 Three -Dimensional Carbon Paper Sulfur, 377 11.3.5 Preparation Method of Sulfur Carbon Composite, 377 11.4 Carbon Layer as a Polysulfide Separator, 380 11.5 Opportunities and Perspectives, 381 References, 382 12 Lithium air Batteries Based on Carbon Nanomaterials 385 12.1 Metal Air Batteries, 385 12.2 Li Air Chemistry, 387 12.2.1 Aqueous Electrolyte Cell, 387 12.2.2 Nonaqueous Aprotic Electrolyte Cell, 389 12.2.3 Mixed Aqueous/Aprotic Electrolyte Cell, 391 12.2.4 All Solid -State Cell, 391 12.3 Carbon Nanomaterials for Li Air Cells Cathode, 393 12.4 Amorphous Carbons, 393 12.4.1 Porous Carbons, 393 12.5 Graphitic Carbons, 395 12.5.1 Carbon Nanotubes, 395 12.5.2 Graphene, 398 12.5.3 Composite Air Electrodes, 400 12.6 Conclusions, 403 References, 403 13 Carbon -Based Nanomaterials for H2 Storage 407 13.1 Introduction, 407 13.2 Hydrogen Storage in Fullerenes, 408 13.3 Hydrogen Storage in Carbon Nanotubes, 414 13.4 Hydrogen Storage in Graphene -Based Materials, 419 13.5 Conclusions, 427 Acknowledgments, 428 References, 428 Index 439
Szczegóły: Carbon Nanomaterials for Advanced Energy Systems - W. Lu
Tytuł: Carbon Nanomaterials for Advanced Energy Systems
Autor: W. Lu
Producent: John Wiley
ISBN: 9781118580783
Rok produkcji: 2015
Ilość stron: 472
Oprawa: Twarda
Waga: 0.8 kg
Recenzje: Carbon Nanomaterials for Advanced Energy Systems - W. Lu
Informacje:
Inne pozycje tego autora: W. Lu (20)
- Powięź Badanie, profilaktyka i terapia dysfunkcji sieci powięziowej (Edra Urban & Partner) - Miękka
- Sułtan (Wielka Litera) - Miękka ze skrzydełkami
- Prawdziwa historia A Q (Dialog) - Miękka
- Potrójny układ (Poligraf) - Miękka
- Chiral (Timof i cisi wspólnicy) -
- Drzwi do ogrodu świadomości (Lużyńska Alina) - Miękka
- W stronę serca (Notitia) - Twarda
- Grombelardzka legenda. Wstęgi Aleru. Księga Całości. Tom 4 (Fabryka Słów) - zintegrowana
- Nasza wojna (W.A.B.) - Zintegrowana
- Żeglarze i jeźdźcy. Księga Całości. Tom 8 (Fabryka Słów) - Zintegrowana
- Legenda. Tom 1 (Otwarte) - Miękka
- Geniusz. Tom 2 (Otwarte) - Miękka ze skrzydełkami
- Patriota (Otwarte) - Miękka ze skrzydełkami
- Buntownik. Legenda. Tom 4 (Otwarte) - Miękka ze skrzydełkami
- Gwiazdy i cienie (Jaguar) - Miękka ze skrzydełkami
- Ból u dziecka (PZWL Wydawnictwo Lekarskie) - Miękka
- Manchester City Pepa Guardioli. Budowa superdrużyny (SQN - Sine Qua Non) - Miękka ze skrzydełkami
- Wojna Chmielnickiego z Rzecząpospolitą w latach 1654-1655 (DiG) - Miękka ze skrzydełkami
- Konfederacja targowicka Wojna polsko-rosyjska 1792 w obronie Konstytucji 3 maja (Biały Kruk) - Twarda
- Kochankowie ze Stambułu (WAM) - Miękka